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Three-dimensional flows of an incompressible fluid, the parameters of which depend on two coordinates and time, are considered. 
The stream surfaces of such flows are cylindrical. The equations of continuity and the Navier-Stokes equations can be transformed 
to relations, one of which is the equation for the stream function the other is the integral of the equations relating the pressure 
and the stream function, and the third is a linear equation for the projection of the velocity vector onto the axis parallel to the 
generatrix of the cylindrical surfaces. The problems of modelling the flows are considered on the basis of the exact solutions of 
the Navier-Stokes equations and Euler’s equations using examples. Relations for the distribution of the flow parameters in the 
channel created by hyperbolical cylinders are derived for the case of unsteady inviscid flow. The streamlines of these flows are 
situated on the side surfaces of the hyperbolical cylinders and intercept the generatrices of the cylinders at certain indirect angles. 
The flow around a circular cylinder and the flow af fluid inside an elliptic cylinder are considered in the case of steady inviscid 
Row. The streamlines on the circular cylinder are arranged transverse to the cylinder (the projection of the velocity vector onto 
the coordinate axis, parallel to the generatrix of the cylinder, is equal to zero). Far from the cylinder the streamlines are also 
situated on a cylindrical surfaces, but not transverse to the cylinder, making certain indirect angles with the generatrix. Viscous 
three-dimensional flows, possessing a certain symmetry, are considered. In the case of radial symmetry the streamlines are 
helical lines. The non-planar Couette flow between parallel moving planes is characterized by the fact that the velocity vectors, 
being situated in the same plane, are collinear, while the velocity vectors in parallel planes are not collinear. Relations for viscous 
steady three-dimensional flows, using well-known relations, obtained for the stream function of two-dimensional flows, are given. 
0 2003 Elsevier Science Ltd. All rights reserved. 

1. GENERAL RELATIONS 

Consider the three-dimensional flow of a viscous incompressible fluid, the velocity vector of which 
u = (ul, u2, u3) depends on time t and two space coordinates: uk = uk(t,xl,x2) (k = 1, 2, 3) in a rectangular 
Cartesian system of coordinates x1,x2, x3. Introducing the stream function w = y(t, x1,x2) (ul = &@x2, 
u2 = --&+rldx,), from the Navier-Stokes equations, we have 

+ljl 3% av -+-Ay+(-l)‘+‘v 
a 

atax3-, ax, 
-Av=fi(t,x,,x2), f=l,2 
ax34 

(1.1) 

a ’ - au3 +~~-~~-vAu3 zh(t,x,,X2) --_- ax3 P at ax2 ax, ax, ax2 
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V=const, p=const, A=z+7, w2=u~+u~ 

1 3x2 

Equations (1.1) give 
af,=af, 
ax2 ax, 

which leads to the equation for the stream function 

aw+ayr*-awgLvMW 
at ax2 ax, ax, ax2 

(1.2) 

(1.3) 
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Let w = w(t, x1, x2) be the solution of Eq. (1.4). Then, considering Eqs (1.1) as a system of partial 
differential equations in the unknown function p/p + w2/2, we obtain, after integrating Eq. (1.1) with 
1=1 

Taking into account Eq. (1.3) from Eq. (1.1) with 1 = 2 we obtain 

In relations (1.5) and (1.6) xl0 and x2() are certain known coordinates. 
Expressingplp from (1.5) and (1.6) and substituting the expression obtained into Eq. (1.2) we will 

have 

This relation, the left-hand side of which depends only on t and x3 and the right-hand side only on t 
andxl,Xz, is only possible if both of its sides are independent of the coordinates and represent the same 
quantity, which depends only on t. We will denote this quantity by c,(t). This means that we must assume 

Now instead of Eqs (1.2) and (1.5) we will write 

au3 av au3 av au3 -+-----=--c,(r)+vAu, at ax, ax, ax, ax, 

p+w’- I’ 
I( 

aYf 8% -Ayl+v$A~-- 
P 2 - '10 3x1 2 atax b 1 + 

12 +I 
x20 ( 

av 
=pf-’ 3% 

lob, 
2 

&f+- + Cl (OX, + 9 (I) I atax, k 

(1.8) 

(1.9) 

After integrating the left equality in the differential equations of the streamlines (t is a parameter) 

ax I= h2 h3 
av I ax2 -awax, = U3(t, X1,X2) 

(1.10) 

we obtain the first integral 

Wx,,x,)=k, (1.11) 

This relation determines the implicitly given function x2. 
Now, taking the first and the last fraction in (1.10) we obtain 

x3-J 
u,(r* XI 9 X2 0, x1, k, )) dr 

av I ax2 I =k2 

aw _ av 
3x2 2 

ax”’ XI 7 X2 (C x1, k, 1) 

(1.12) 

The first integrals (1.11) and (1.12) form a general integral of system (1.10). 
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Equation (1.11) determines the cylindrical stream surface with generatrices parallel to the x3 axis, at 
each instant of time. The position of the x3 coordinate of the streamline for a given value of ki (i.e. for 
the given cylindrical surface) is determined from Eq. (1.12) at each instant of time. In this case we find 
the constant k2 by assigning any sectionx3 = const and a point on the stream surface (1.11) in this. 

Hence, Eqs (1.4) (1.8) and (1.9) enable us to simulate the fluid flow in the vicinity of cylindrical 
surfaces. 

In particular, let w be a function with separated variables: 

w = A(O&, 9 -9 1 (1.13) 

Then instead of Eq. (1.11) we will write 

In this case, the stream surfaces, defined by this equation for various kl, do not vary with time. 
The first integral in the steady-flow case will be 

(1.14) 

instead of (1.11). 

2. THE SIMULATION OF UNSTEADY INVISCID FLOWS 

In order to consider inviscid flow, terms with the multiplier v must be dropped from Eqs (1.4) and (1.8). 
The harmonic function w of the variables x1 and x2 is an obvious solution of Eq. (1.4) in this case 

Ay=O (2.1) 

We take, as a simple example, the function 

w = M-w-2 (2.2) 

which satisfies Eq. (2.1). Integrating the following system of differential equations in the symmetric form 

dt dx, a!x2 du, -=- =-=- 
1 40x, --A(& -cl 0) 

for the condition A(t) = c,(t), corresponding to the partial differential equation (1.8), we obtain the 
general solution of Eq. (1.8) in the given case 

w$ tl9 s) = 0 (2.3) 

where 

5=.3x2, q=u,+j c,(t)dt, <=u3+ln/x, 1 

In particular, if @ is the linear function of the arguments rl and s we have 

where f is an arbitrary continuously differentiable function. 
Using Eq. (2.2) we obtain 

u, = A(t)x,, u2 = -A(r)x, 

and from Eq. (1.9) we find 

P _ c:(t) 2 -_-- P 2 0, +-+cxt ~~-~)+C;(t)(~-~)+c~(~)x3 +c2(t) 

(2.5) 

G-2 
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The general integral of system (1.10) in this case has the form 

4x2 = k, 

x -1 
Ii C,(f) 

f(k,)+ c,(r)dr)ln]x, ]+--&ln2 Ix, I=k2 
1 

Relations (2.2) and (2.4)-(2.6) can be used to determine the distribution of the parameters of unsteady 
inviscid flow in the channel formed by hyperbolic cylinders 

xl-x2 = ml, x,x2 = m2 (m,S k,S m,) 

the generatrices of which are parallel to thexs axis (for given cl(t), c2(t),f(x,x,)j. 

3. THE SIMULATION OF STEADY FLOWS USING 
HARMONIC FUNCTIONS 

Consider steady inviscid flow. The general solution of Eq. (1.8) in this case will be 

u3 = fW(-q 7 -9 1) - c,cp(x, ? w(x, 9 x2 1) (3.1) 

where 

w = ~(xi, x2) is the solution of Eq. (1.4),f(~) is an arbitrary continuously differentiable function, and 
the function x2 = x2(x1, ki) is defined by the relation ~(x,, x2) = k,. 

Relation (1.12) in this case has the form 

x3 + F (p2 (x, 9 k, > - f(k, >cp(.q 3 k, ) = k, 

The harmonic function (A~J = 0) will be the obvious solution of Eq. (1.4). Taking this into account 
solutions of well-studied problems on potential two-dimensional flows [l] can, in particular, be used 
to simulate the three-dimensional flows considered. 

Consider, for example, the problem of the flow around a circular cylinder of radius a. As a solution 
of Eq. (1.4) we will take [l] 

yl=ux, 
( 1 

1-A , U = const 
1 2 

Putting cl = 0 in Eq. (3.1) it can be assumed, in particular, that 

~3 = Aw, A = const (3.3) 

Using Eqs (3.2) and (3.3) we obtain the velocity distribution, and using Eq. (1.9) where we must put 

AV = 0, a2ijf I atax, = 0, a2w I atax = 0 

we obtain the pressure distribution. 
The third-order curves 

I 

are the directrices of the cylindrical stream surfaces in this case. On the surface of the cylinder w = 0. 
Note that the harmonic function v is also the solution of Eq. (1.4) when the viscosity is taken into 

account; function (3.3) is the solution of Eq. (1.8) when cl = 0 in the steady case when the viscosity is 
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taken into account. Thus, obviously, the harmonic function t+~ and function (3.3) can be used to simulate 
three-dimensional viscous steady flows of a fluid in the regions bounded by the stream surfaces 
~(xr, xX) = ki. Although the functions tl~ and u3 are harmonic, the flow will be turbulent. 

4. THE SIMULATION OF STEADY FLOWS USING 
BIHARMONIC FUNCTIONS 

If 

Aw=c, c = const (4.1) 

then Eq. (1.4) is satisfied identically. It is analogous to the equation which describes the flow of a viscous 
fluid in a fixed cylindrical pipe. 

Taking this into account, the well-known solutions of boundary-value problems for Eq. (4.1) [2-4] 
can be used to simulate the three-dimensional flows of an inviscid fluid in cylindrical pipes for various 
forms of cross-sections. 

We will, for example, consider the steady inviscid flow of a fluid inside a fixed elliptic cylinder 

In this case the solution of Eq. (4.1) which vanishes at the boundary of the region, will be the function 

(4.2) 

Hence it follows that 

ll, = -~&IX, I b2, u2 =2Mx, /a2 

Confining ourselves to the case of positive values of,rZ, found using Eq. (4.2) (@i,x2) = ki), we obtain 
the function cp from Eq. (3.1) for u3 in the given case 

We will obtain for the pressure from Eq. (1.9) 

P+W2 - = cyI(x,, x2) + c,n3 + const 
P 2 

(4.3) 

The biharmonic function w(xi, x2), which satisfies Eq. (4.1) is also the solution of Eq. (1.4) taking 
into account the viscosity. Function (3.3) for c,/(M) = c is the solution of Eq (1.8) taking into account 
the viscosity. Thus, obviously, the biharmonic function w and function (3.3) can be used to simulate 
three-dimensional viscous steady flows of fluid in regions, bounded by the stream surfaces ~(xi, x2) = 
kl. 

Returning to steady inviscid flows, we will examine the flow in a cylindrical pipe of circular cross- 
section when the fluid is injected and sucked out through the walls. The boundaT condition in this 
case has the form 

w=fW for r= a, osec2Jr 

where r and 8 are polar coordinates (xi = r cos 0,x2 = r sin 0) and a is the radius of the cylinder. Sections 
of the cylinder (for example, for 0 c aI G 8 G a2 < 2~) wheref(8) = 0, correspond to impenetrable 
walls. 

We will seek a solution in the form 

yt = w + cr2f4 
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where w is the solution of the homogeneous equation Aw = 0, satisfying the condition 

w(a, 6) = (9(0}, (p(8) = f(0) - ca2 / 4 for r = a 

Using the known solution for the function w [5] we will write the required solution 

4. r<a 
(4.4) 

For u3 we can assume Eq. (3.3), in particular. We will have formula (4.3) for the pressure, where the 
function w is given by Eq. (4.4). 

5. THE SIMULATION OF SYMMETRICAL FLOWS 

Considering the steady flow of a viscous fluid we will consider cases where the flow possesses certain 
symmetries. 

For example, suppose 

W = W(r), u3 = u3(r) (t-=4=) 

Then the left-hand sides of Eqs (1.4) and (1.8) vanish identically and instead of them we will have 

Mv=O, Aus = cl (5.1) 

The function w = y(r), which is the solution of the first equation of (5.1) is used in the plane case 
(u3 = 0) to describe the steady motion of the fluid between rotating coaxial cylinders [2], or in the channels 
formed by parts of coaxial circular cylinders [6]. 

The function which is the solution of the second equation of (5.1) has been used in [7] to describe 
the purely longitudinal motion of the fluid (w = 0) in the annular channel between fixed cylinders, 
produced by a pressure difference at the channel ends. 

The simultaneous use of the solutions of Eqs (5.1) enables us to consider the helical motion of a 
viscous fluid in the corresponding channels caused by the rotation of the cylinders and a pressure 
difference at the channel ends. 

Suppose further that w = w(e), ~1s = ~~(0) (0 is the polar angle). In this case Eq. (1.4) takes the form 

ll”+414+u2/v-c=o 

where u = w’, c = const 
Using the solution of this equation, obtained directly from the Navier-Stokes equation, the flow in 

a straight-wall diffuser [2] (u3 = 0) with the equations for the walls 0 = ?a/2 was considered by Hamel. 
Putting cl = 0 in Eq. (1.8) we obtain 

u3 = A0 + B, A, B = const 

We obtainA and B by assuming the wall 0 = -a/2 to be fixed and the wall 0 = a/2 to be moving in the 
longitudinal direction with a constant velocity U: 

u3 = U@/a+l/,) (5.2) 

The simultaneous application of Hamel’s relations and Eq. (5.2) enables us to consider the three- 
dimensional motion of the fluid in a channel with non-parallel plane walls. 

Suppose now that w = @2), u3 = u3(xz). Considering that u1 = aw/ax2, using Eq. (1.4) we obtain a 
solution for u1 in the form of a quadratic trinomial. From Eq. (1.8) we also obtain a solution for u3 in 
the form of quadratic trinomial. Each of these relations by itself (u, = u1(x2), u3 = 0; u1 = 0, u3 = u3(xz)) 
describes plane Couette flow. The simultaneous use of the solutions ~JI = w(x$, u3 = u3(x2) of Eqs (1.4) 
and (1.8) enables us to consider non-plane Couette flow between parallel moving planes. For this the 
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boundary conditions for u1 and u2 on the walls must be chosen so that the vectors (al, as) and (bt, bs) 
are non-collinear, where aI and br are the values of ut on the bottom and top planes, respectively, and 
a3 and b3 are the values of u3 on the bottom and top planes, respectively. 

6. THE SIMULATION OF VISCOUS FLOWS 

Putting cl(t) = 0 and 

us=MAyr+N; M, N = const (6-l) 

in Eq. (1.8) we obtain an equation which is identical to (1.4). Hence, the solution of Eq. (1.4) 
simultaneously with the relation (6.1) enables us to simulate the three-dimensional viscous flow of a 
fluid. 

Considering the steady viscous flow, we will take as the solution of Eq. (1.4) the function [2] 

v=A’P)+2w 

cp=- 2(u In r + be) 2(bInr-a@. 

u2+b2 
, x= u2+b2 , u,b=const 

The following equation [2] 

cp - tpo = j [bu3 /(3v)+ (a2 - b2)u2 + 2c,u + c,]-%fu 

defines cp as a certain function of u. In this equation u = f’(q); (po, cl, c2, and cl and c2 are constants. 
In particular suppose cpo, cl, c2 = 0, a = b. Then we obtain an explicit representation of the solutions 

of Eqs (1.4) and (1.8). 

y=-+)-‘+2vbX 
b 

lnr+O lnr-8 cp=- -, X=7, 
b 

cp<O (r>l, 8>0, b>O) 

48Mv 1 
u,=MAyr+N=-- 

b3 r2’ 

-3+N 

Knowing tt~ we obtain ug = +I&, u, = r-‘aw/d@ 

1. 
2. 
3. 
4. 
5. 
6. 

7. 
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